Electroluminescence from multi-particle exciton complexes in monolayer WSe2

Matthias Paur, Aday J. Molina-Mendoza, Rudolf Bratschitsch, Kenji Watanabe, Takashi Taniguchi, and Thomas Mueller

Go to the profile of Nature Communications
Jan 25, 2019
0
0

Received Date: 6th December 18

Light emission from higher-order correlated excitonic states has been recently reported in hBN-encapsulated monolayer WSe2 upon optical excitation. These exciton complexes are found to be bound states of excitons residing in opposite valleys in momentum space, a promising feature that could be employed in applications such as quantum optoelectronics. However, electrically-driven light emission from such excitons species is still lacking. Here we report electroluminescence from bright and dark excitons, negatively charged trions and neutral and negatively charged biexcitons, generated by a pulsed gate voltage, in hexagonal boron nitride encapsulated monolayer WSe2 with graphene as electrode. We observe that the relative intensity of the different exciton complexes strongly depends on the pulse parameters. We find the electroluminescence from charged biexcitons and dark excitons to be as narrow as 2.8 meV.

Read in full at arXiv.

This is an abstract of a preprint hosted on an independent third party site. It has not been peer reviewed but is currently under consideration at Nature Communications.


Go to the profile of Nature Communications

Nature Communications

Nature Research, Springer Nature