Anthropogenic mineral supply through a circular economy approach has potential to meet Chinese resource consumption

Xianlai Zeng, Saleem H. Ali, Jinping Tian and Jinhui Li

Aug 28, 2019
0
0

Received Date: 30th July 19

An increasingly large quantity of primary mineral resource is being converted into manufactured products and destined for solid waste disposal. This material can be reclassified as “anthropogenic mineral reserves” and be a potential source of metals for a range of manufacturing uses. China is implementing a range of policy interventions which can lead to such a classification that will raise the profile of recycling programs as a means of metal supply. China is not only a major producer of consumer products and importer of secondary metals, but also has a major urban infrastructure footprint. Here we consider three product groups, 30 products, and imports, and map the recycling potential of anthropogenic mineral and 23 types of the capsulated materials by targeting their evolution from 2010 to 2050. Total weight of anthropogenic mineral on average in China reached 39 Mt in 2010, but it will double in 2022 and quadruple in 2045. Stocks of precious metals and rare earths will increase faster than most base materials. The total economic potential in yearly-generated anthropogenic mineral is anticipated to grow markedly from 100 billion US$ in 2020 to 400 billion US$ in 2050. Anthropogenic mineral of around 20 materials will be able to meet projected consumption of three product groups by 2050, due to high availability of recycled content and gradual saturation of consumption. Durability of material usage and the concomitant stock of the anthropogenic mineral remain major challenges in determining the viability of this supply in the second half of the coming century.

Read in full at Preprints.

This is an abstract of a preprint hosted on an independent third party site. It has not been peer reviewed but is currently under consideration at Nature Communications.

Nature Communications

Nature Research, Springer Nature