Interrogation of Enhancer Function by Enhanced CRISPR Epigenetic Editing

Kailong Li, Yuxuan Liu, Hui Cao, Yuannyu Zhang, Zhimin Gu, Xin Liu, Andy Yu, Pranita Kaphle, Kathryn E. Dickerson, Min Ni, Jian Xu

Sep 09, 2019

Received Date: 21st August 19

Tissue-specific gene expression requires coordinated control of gene-proximal and -distal cis-regulatory elements (CREs), yet functional analysis of gene-distal CREs such as enhancers remains challenging. Here we describe enhanced CRISPR/dCas9-based epigenetic editing systems, enCRISPRa and enCRISPRi, for multiplexed analysis of enhancer function in situ and in vivo. Using dual effectors capable of re-writing enhancer-associated chromatin modifications, we show that enCRISPRa and enCRISPRi modulate gene transcription by remodeling local epigenetic landscapes at sgRNA-targeted enhancers and associated genes. Comparing with existing methods, the new systems display more robust perturbation of enhancer activity and gene transcription with minimal off-targets. Allele-specific targeting of enCRISPRa to oncogenic TAL1 super-enhancer modulates TAL1 expression and cancer progression in xenotransplants. Multiplexed perturbations of lineage-specific enhancers using an enCRISPRi knock-in mouse establish in vivo evidence for lineage-restricted essentiality of developmental enhancers during hematopoietic lineage specification. Hence, enhanced CRSIPR epigenetic editing provides opportunities for interrogating enhancer function in native biological contexts.

Read in full at bioRxiv.

This is an abstract of a preprint hosted on an independent third party site. It has not been peer reviewed but is currently under consideration at Nature Communications.

Nature Communications

Nature Research, Springer Nature