Dynamical informational structures characterize the different human brain states of wakefulness and deep sleep

Javier Alejandro Galadi, Silvana Silva Pereira, Yonantan Sanz Perl, Morten L Kringelbach, Inmaculada Gayte, Helmut Laufs, Enzo Tagliazucchi, Jose Antonio Langa, Gustavo Deco

Go to the profile of Nature Communications
Nov 19, 2019
0
0

Received Date: 31st October 19

The dynamical activity of the human brain describes an extremely complex energy landscape changing over time and its characterisation is central unsolved problem in neuroscience. We propose a novel mathematical formalism for characterizing how the landscape of attractors sustained by a dynamical system evolves in time. This mathematical formalism is used to distinguish quantitatively and rigorously between the different human brain states of wakefulness and deep sleep. In particular, by using a whole-brain dynamical ansatz integrating the underlying anatomical structure with the local node dynamics based on a Lotka-Volterra description, we compute analytically the global attractors of this cooperative system and their associated directed graphs, here called the informational structures. The informational structure of the global attractor of a dynamical system describes precisely the past and future behaviour in terms of a directed graph composed of invariant sets (nodes) and their corresponding connections (links). We characterize a brain state by the time variability of these informational structures. This theoretical framework is potentially highly relevant for developing reliable biomarkers of patients with e.g. neuropsychiatric disorders or different levels of coma.

Read in full at bioRxiv.

This is an abstract of a preprint hosted on an independent third party site. It has not been peer reviewed but is currently under consideration at Nature Communications.

Go to the profile of Nature Communications

Nature Communications

Nature Research, Springer Nature