Dynamic control of proinflammatory cytokines Il-1β and Tnf-α by macrophages is necessary for functional spinal cord regeneration in zebrafish

Themistoklis M. Tsarouchas, Daniel Wehner, Leonardo Cavone, Tahimina Munir, Marcus Keatinge, Marvin Lambertus, Anna Underhill, Thomas Barrett, Elias Kassapis, Nikolay Ogryzko, Yi Feng, Tjakko J. van Ham, Thomas Becker and Catherina G. Becker

Go to the profile of Nature Communications
Jun 13, 2018
0
0

Received: 19th May 18

Spinal cord injury leads to a massive response of innate immune cells (microglia, macrophages, neutrophils) both, in non-regenerating mammals and in successfully regenerating zebrafish, but the role of these immune cells in functional spinal cord regeneration in zebrafish has not been addressed. Here we show that inhibiting inflammation reduces and promoting it accelerates axonal regeneration in larval zebrafish. Mutant analyses show that peripheral macrophages, but not neutrophils or microglia, are necessary and sufficient for full regeneration. Macrophage-less irf8 mutants show prolonged inflammation with elevated levels of Il-1β and Tnf-α. Decreasing Il-1β levels or number of Il-1β+ neutrophils rescues functional regeneration in irf8 mutants. However, during early regeneration, interference with Il-1β function impairs regeneration in irf8 and wildtype animals. Inhibiting Tnf-α does not rescue axonal growth in irf8 mutants, but impairs it in wildtype animals, indicating a pro-regenerative role of Tnf-α. Hence, inflammation is tightly and dynamically controlled by macrophages to promote functional spinal cord regeneration in zebrafish.

Read in full at bioRxiv.

This is an abstract of a preprint hosted on an independent third party site. It has not been peer reviewed but is currently under consideration at Nature Communications.

Go to the profile of Nature Communications

Nature Communications

Nature Research, Springer Nature