PrimPol-dependent single-stranded gap formation mediates homologous recombination at bulky DNA adducts

Ann Liza Piberger, Akhil Bowry, Richard D W Kelly, Alexandra K Walker, Daniel Gonzalez, Laura J Bailey, Aidan J Doherty, Juan Méndez, Joanna R Morris, Helen E Bryant, Eva Petermann

Like Comment

Received Date: 15th February 20

Obstacles on the DNA template can lead to DNA replication fork stalling and genomic rearrangements. RAD51-mediated homologous recombination (HR) can promote restart and repair of stalled forks, but also post-replicative repair once the obstacle has been bypassed. Bulky DNA adducts are important replication-blocking lesions induced by environmental carcinogens, but it is not known whether they activate HR directly at stalled forks, or at gaps left behind ongoing forks. Here we show that in mammalian cells, bulky adducts predominantly induce HR at post-replicative gaps formed by the DNA/RNA primase PrimPol. Using BPDE and other bulky model lesions, we report that RAD51 is not recruited to stalled or collapsed forks, but instead to long gaps formed by PrimPol re-priming activity and resection by MRE11 and EXO1. In contrast, RAD51 loading at DSBs does not require PrimPol. At bulky adducts, PrimPol is required for the induction of sister chromatid exchanges and genetic recombination. Our data support that HR at bulky adducts in mammalian cells involves post-replicative gap repair and define a role for PrimPol in DNA damage tolerance by homologous recombination.

Read in full at bioRxiv

This is an abstract of a preprint hosted on an independent third party site. It has not been peer reviewed but is currently under consideration at Nature Communications.

Go to the profile of Nature Communications

Nature Communications

Nature Research, Springer Nature