ABHD11 regulates 2-oxoglutarate abundance by protecting mitochondrial lipoylated proteins from lipid peroxidation damage

Peter SJ Bailey, Brian M Ortmann, Jack W Houghton, Ana S H Costa, Robin Antrobus, Christian Frezza, James A Nathan

Like Comment

Received Date: 9th January 20

2-oxoglutarate (2-OG or a-ketoglutarate) relates mitochondrial metabolism to cell function by modulating the activity of 2-OG dependent dioxygenases (2-OG DDs) involved in the hypoxia response and DNA/histone modifications. However, metabolic pathways that regulate these oxygen and 2-OG sensitive enzymes remain poorly understood. Here, using CRISPR Cas9 genome-wide mutagenesis to screen for genetic determinants of 2-OG levels, we uncover a redox sensitive mitochondrial lipoylation pathway, dependent on the mitochondrial hydrolase ABHD11, that signals changes in mitochondrial 2-OG metabolism to 2-OG DD function. ABHD11 loss or inhibition drives a rapid increase in 2-OG levels by impairing lipoylation of the 2-OG dehydrogenase complex (OGDHc) – the rate limiting step for mitochondrial 2-OG metabolism. Rather than facilitating lipoate conjugation, ABHD11 protects the catalytic lipoyl domain from lipid peroxidation products formed by oxidative damage, demonstrating a requirement for a lipoyl repair pathway in human cells, and highlighting how the redox sensitivity of lipoylation modulates 2-OG metabolism.

Read in full at bioRxiv.

This is an abstract of a preprint hosted on an independent third party site. It has not been peer reviewed but is currently under consideration at Nature Communications.

Go to the profile of Nature Communications

Nature Communications

Nature Research, Springer Nature