Gene duplication drives genome expansion in Thaumarchaeota

Paul O Sheridan, Sebastien Raguideau, Christopher Quince, Thames Consortium, Tom A Williams, Cecile Gubry-Rangin

Like Comment

Received Date: 20th April 20

Ammonia-oxidising archaea of the phylum Thaumarchaeota are keystone species in global nitrogen cycling. However, only three of the six known families of the terrestrially ubiquitous order Nitrososphaerales possess representative genomes. Here we provide genomes for the three remaining families and examine the impact of gene duplication, loss and transfer events across the entire phylum. Much of the genomic divergence in this phylum is driven by gene duplication and loss, but we also detected early lateral gene transfer that introduced considerable proteome novelty. In particular, we identified two large gene transfer events into Nitrososphaerales.  The fate of gene families originating on these branches was highly lineage-specific, being lost in some descendant lineages, but undergoing extensive duplication in others, suggesting niche-specific roles within soil and sediment environments. Overall, our results suggest that lateral gene transfer followed by gene duplication drives Nitrososphaerales evolution, highlighting a previously under-appreciated mechanism of genome expansion in archaea.

Read in full at bioRxiv.

This is an abstract of a preprint hosted on an independent third party site. It has not been peer reviewed but is currently under consideration at Nature Communications.

Go to the profile of Nature Communications

Nature Communications

Nature Research, Springer Nature