Reversible microscale assembly of nanoparticles driven by the phase transition of a thermotropic liquid crystal

Niamh Mac Fhionnlaoich, Stephen Schrettl, Nicholas B. Tito, Ye Yang, Malavika Nair, Luis A. Serrano, Kellen Harkness, Paulo Jacob Silva, Holger Frauenrath, Francesco Stellacci, Stefan Guldin

Like 0

Received: 11th December 17

The arrangement of nanoscale building blocks into patterns with microscale periodicity is challenging to achieve via self-assembly processes. Here, we report on the phase transition-driven collective assembly of gold nanoparticles in a thermotropic liquid crystal. A temperature-induced transition from the isotropic to the nematic phase leads to the assembly of individual nanometre-sized particles into arrays of micrometre-sized aggregates, whose size and characteristic spacing can be tuned by varying the cooling rate. This fully reversible process offers hierarchical control over structural order on the molecular, nanoscopic, and microscopic level and is an interesting model system for the programmable patterning of nanocomposites with access to micrometre-sized periodicities.

Read in full at ChemRxiv.

This is an abstract of a preprint hosted on an independent third party site. It has not been peer reviewed but is currently under consideration at Nature Communications.

Go to the profile of Nature Communications

Nature Communications

Nature Research, Springer Nature