Rapid mantle flow with power-law creep explains deformation after the 2011 Tohoku mega-quake

Ryoichiro Agata, Sylvain D. Barbot, Kohei Fujita, Mamoru Hyodo, Takeshi Iinuma, Ryoko Nakata, Tsuyoshi Ichimura, Takane Hori

Go to the profile of Nature Communications
Jul 25, 2018
Like 0

Received: 13th June 18

The deformation transient that follows large subduction zone earthquakes is thought to originate from the interaction of viscoelastic flow in the asthenospheric mantle and slip on the megathrust that are both accelerated by the sudden coseismic stress change. The surface deformation following the 2011 Mw 9.0 Tohoku earthquake provides some of the most comprehensive constraints on surface deformation following mega-quakes. Assuming that the flow of mantle rocks is Newtonian, the low viscosity required to explain surface deformation was attributed to a weak lithosphere-asthenosphere boundary, but these findings are at odds with well-established results from mineral physics. Here, we show that combining insight from laboratory solid-state creep and friction experiments can successfully explain the spatial distribution of surface deformation in the first few years after the Tohoku earthquake. The transient reduction of effective viscosity resulting from power-law (nonlinear) stress-strain-rate interactions in the asthenosphere explains the peculiar reversal of trench-perpendicular displacements revealed by seafloor geodesy, while the rapid slip acceleration on the megathrust accounts for surface displacements on land and offshore outside the rupture area. The low-velocity zone of the lithosphere-asthenosphere boundary has been previously associated with a permanent low-viscosity structure. In contrast, our results suggest that a rapid mantle flow takes place in the lithosphere-asthenosphere boundary with temporarily decreased viscosity in response to large coseismic stress, presumably due to the activation of power-law creep during the postseismic period.

Read in full at EarthArXiv.

This is an abstract of a preprint hosted on an independent third party site. It has not been peer reviewed but is currently under consideration at Nature Communications.

Go to the profile of Nature Communications

Nature Communications

Nature Research, Springer Nature

Comments are disabled