Functional recruitment of dynamin requires multimeric interactions for efficient endocytosis

Morgane Rosendale, Thi Van, Dr. Dolors Grillo-Bosch, Isabel Gauthereau, Mr. Stéphane Claverol, Dr. Daniel Choquet, Matthieu Sainlos and David Perrais

Go to the profile of Nature Communications
Aug 09, 2018
0
Like 0

Received: 21st June 18

During clathrin mediated endocytosis (CME), membrane scission is achieved by the concerted action of dynamin and its interacting partners. Essential interactions occur between the proline/arginine-rich domain of dynamin (dynPRD) and the Src-homology domain 3 (SH3) of various proteins including amphiphysins. Here we show that multiple SH3 domains must bind simultaneously to dynPRD through three adjacent motifs for dynamin’s efficient recruitment and function. First, we show in dynamin triple knock-out cells that mutant dynamins modified in a single motif, including the central amphiphysin SH3 binding motif, are partially capable of rescuing CME. However, mutating two motifs largely prevents that ability. To support this observation, we designed divalent dynPRD-derived peptides. These ligands bind multimers of amphSH3 with >100-fold higher affinity than monovalent ones in vitro. Accordingly, dialyzing living cells with these divalent peptides through a patch-clamp pipette blocks CME 2 to 3 times more effectively than with monovalent ones. Finally, the frequency of endocytic events decreases with competing peptides or hypomorphic rescue mutants but the kinetics of dynamin recruitment is unaffected. This suggests that PRD-SH3 interactions act upstream of dynamin accumulation at the neck of nascent vesicles. We conclude from these data that dynamin drives vesicle scission via multivalent interactions in vivo.

Read in full at bioRxiv

This is an abstract of a preprint hosted on an independent third party site. It has not been peer reviewed but is currently under consideration at Nature Communications.

Go to the profile of Nature Communications

Nature Communications

Nature Research, Springer Nature

Comments are disabled