Homeostatic and Interferon-induced gene expression represent different states of promoter-associated transcription factor ISGF3

Ekaterini Platanitis, Duygu Demiroz, Christophe Capelle, Anja Schneller, Markus Hartl, Thomas Gossenreiter, Mathias Müller, Maria Novatchkova and Thomas Decker

Go to the profile of Nature Communications
Aug 15, 2018
0
0
Like 0 Comment

Received: 16th July 18

Cells maintain the balance between homeostasis and inflammation by adapting and integrating the activity of intracellular signalling cascades, including the JAK-STAT pathway. Our understanding how a tailored switch from homeostasis to a strong receptor-dependent response is coordinated remains limited. We used an integrated transcriptomic and proteomic approach to analyze transcription-factor binding, gene expression and in vivo proximity-dependent labelling of proteins in living cells under homeostatic and interferon (IFN)- induced conditions. We show that interferons (IFN) switch murine macrophages from resting-state to induced gene expression by alternating subunits of transcription factor ISGF3. Whereas preformed STAT2-IRF9 complexes control basal expression of IFN-induced genes (ISG), both type I IFN and, unexpectedly, IFNg cause promoter binding of a complete ISGF3 complex containing STAT1, STAT2 and IRF9. In contrast to the dogmatic view of ISGF3 formation in the cytoplasm, our results suggest a model wherein the assembly of the ISGF3 complex occurs on DNA.

Read in full at bioRxiv.

This is an abstract of a preprint hosted on an independent third party site. It has not been peer reviewed but is currently under consideration at Nature Communications.

Go to the profile of Nature Communications

Nature Communications

Nature Research, Springer Nature