A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures

Wei Ting Chen, Alexander Y. Zhu, Jared Sisler, Zameer Bharwani, and Federico Capasso

Go to the profile of Nature Communications
Oct 12, 2018
0
0

Received Date: 27th August 2018

Metasurfaces have attracted widespread attention due to an increasing demand of compact and wearable optical devices. For many applications, polarization-insensitive metasurfaces are highly desirable and appear to limit the choice of their constituent elements to isotropic nanostructures. This greatly restricts the degrees of geometric parameters available in designing each nanostructure. Here, we demonstrate a polarization-insensitive metalens using otherwise anisotropic nanofins which offer additional control over the dispersion and phase of the output light. As a result, we can render a metalens achromatic and polarization-insensitive across nearly the entire visible spectrum from wavelength 460 nm to 700 nm, while maintaining diffraction-limited performance. The metalens is comprised of just a single layer of TiO2 nanofins and has a numerical aperture of 0.2 with a diameter of 26.4 µm. The generality of our polarization-insensitive design allows it to be implemented in a plethora of other metasurface devices with applications ranging from imaging to virtual/augmented reality.

Read in full at arXiv.

This is an abstract of a preprint hosted on an independent third party site. It has not been peer reviewed but is currently under consideration at Nature Communications.

  ?utm_source=Nature_website&utm_medium=Website_links&utm_content=SamZim-Nature-Nature_Comms-Multidisciplinary-Global&utm_campaign=NATCOMMS_AWA_NC-UNDER-CONSID


Go to the profile of Nature Communications

Nature Communications

Nature Research, Springer Nature