Deep Learning Accelerated Gold Nanocluster Synthesis

Jiali Li, Tiankai Chen, Kaizhuo Lim, Lingtong Chen, Saif A. Khan, Jianping Xie & Xiaonan Wang

Go to the profile of Nature Communications
Nov 09, 2018
0
0

Received Date: 25th October 18

The understanding of inorganic reactions, especially those far from the equilibrium state, is relatively limited due to their inherent complexity. Poor understandings on the underlying synthetic chemistry have constrained the design of efficient synthesis routes towards the desired final products, especially those inorganic materials at atomic precision. In this work, using the synthesis of atomically precise gold nanoclusters as a demonstration platform, we have successfully developed a deep learning framework for guiding material synthesis and accelerating the whole workflow. With only 54 examples, the proposed Siamese Neural Networks (SNN) combined with Graph Convolutional Neural Networks (GCNN) and the basic descriptors classification model have been trained. The capability of predicting the target synthesis results has been demonstrated with a successful experimental validation. In addition, understandings in the synthesis process can be gained from a decision tree trained by a large amount of generated data from the well-trained classification model. This study not only provides a data-driven method accelerating gold nanocluster synthesis, but also sheds light on understanding complex inorganic materials synthesis with low data amount.

Read in full at arXiv.

This is an abstract of a preprint hosted on an independent third party site. It has not been peer reviewed but is currently under consideration at Nature Communications.


Go to the profile of Nature Communications

Nature Communications

Nature Research, Springer Nature