Meiotic effects of MSH4 copy number variation support an adaptive role for post-polyploidy gene loss

Adrián Gonzalo, Marie‐Odile Lucas , Catherine Marquis, Andrew Lloyd, and Eric Jenczewski

Go to the profile of Nature Communications
Dec 06, 2018
0
0

Received Date: 19th November 18

Many eukaryotes descend from polyploid ancestors that experienced massive duplicate gene loss. This genomic erosion is particularly strong for duplicated (meiotic) recombination genes that return to a single copy more rapidly than genome average following polyploidy. To better understand the evolutionary forces underlying duplicate loss, we analysed how varying copy numbers of MSH4, an essential meiotic recombination gene, influences crossover formation in allotetraploid Brassica napus. We show that faithful chromosome segregation and crossover frequencies between homologous chromosomes are unchanged with MSH4 duplicate loss; by contrast, crossovers between homoeologous chromosomes (which result in genomic rearrangements) decrease with reductions in MSH4 copy number. We also found that inter-homoeologue crossovers originate almost exclusively from the MSH4-dependent crossover pathway. Limiting the efficiency of this pathway by decreasing the copy number of key meiotic recombination genes could therefore contribute to adaptation to polyploidy, by promoting regular chromosome segregation and genomic stability.

Read in full at bioRxiv.

This is an abstract of a preprint hosted on an independent third party site. It has not been peer reviewed but is currently under consideration at Nature Communications.

Go to the profile of Nature Communications

Nature Communications

Nature Research, Springer Nature