Femtosecond Synchronization of Optical Clocks Off of a Flying Quadcopter

Hugo Bergeron, Laura C. Sinclair, William C. Swann, Isaac Khader, Kevin C. Cossel, Michael Cermak, Jean-Daniel Deschênes, and Nathan R. Newbury

Go to the profile of Nature Communications
Jan 04, 2019
0
0

Received Date: 10th December 18

Future optical clock networks will require free-space optical time-frequency transfer between flying clocks. However, simple one-way or standard two-way time transfer between flying clocks will completely break down because of the time-of-flight variations and Doppler shifts associated with the strongly time-varying optical link distances. Here, we demonstrate an advanced, comb-based optical two-way time-frequency transfer that can successfully synchronize the optical timescales at two sites connected via a time-varying turbulent air path. The link between the two sites is established using either a quadcopter-mounted retroreflector or a swept delay line at speeds up to 24 m/s. Despite 50-ps breakdown in time-of-flight reciprocity, the sites’ timescales are synchronized to < 1 fs in time deviation. The corresponding sites’ frequencies agree to ~ 10-18 despite 10-7 Doppler shifts. This work demonstrates comb-based O-TWTFT can enable free-space optical networks between airborne or satellite-borne optical clocks for precision navigation, timing and probes of fundamental science.

Read in full at arXiv.

This is an abstract of a preprint hosted on an independent third party site. It has not been peer reviewed but is currently under consideration at Nature Communications.


Go to the profile of Nature Communications

Nature Communications

Nature Research, Springer Nature