Aromatic polyketide biosynthesis: fidelity, evolution and engineering

Zhiwei Qin, Rebecca Devine, Matthew I. Hutchings and Barrie Wilkinson

Thumb 65bb0659497b85bae0759dc2a6b4b5db 400x400
Mar 19, 2019

Received Date: 11th March 19

We report the formicapyridines which are structurally and biosynthetically related to the pentacyclic fasamycin and formicamycin aromatic polyketides but comprise a rare pyridine moiety. These new compounds are trace level metabolites formed by derailment of the major biosynthetic pathway. Inspired by evolutionary logic we show that rational mutation of a single gene in the biosynthetic gene cluster leads to a significant increase both in total formicapyridine production and their enrichment relative to the fasamycins/formicamycins. Our observations broaden the polyketide biosynthetic landscape and identify a non-catalytic role for ABM superfamily proteins in type II polyketide synthase assemblages for maintaining biosynthetic pathway fidelity.

Read in full at bioRxiv.

This is an abstract of a preprint hosted on an independent third party site. It has not been peer reviewed but is currently under consideration at Nature Communications.

Medium 65bb0659497b85bae0759dc2a6b4b5db 400x400

Nature Communications

Nature Research, Springer Nature