Fully phase-stabilized quantum cascade laser frequency comb

Luigi Consolino, Malik Nafa, Francesco Cappelli, Katia Garrasi, Francesco P. Mezzapesa, Lianhe Li, A. Giles Davies, Edmund H. Linfield, Miriam S. Vitiello, Paolo De Natale and Saverio Bartalini

Go to the profile of Nature Communications
Mar 25, 2019

Received Date: 10th March 19

Optical frequency comb synthesizers (FCs)1⁠ are laser sources covering a broad spectral range with a number of discrete, equally spaced and highly coherent frequency components, fully controlled through only two parameters: the frequency separation between adjacent modes and the carrier offset frequency. Providing a phase-coherent link between the optical and the microwave/radio-frequency regions,2⁠ FCs have become groundbreaking tools for precision measurements.3,4

Despite these inherent advantages, developing miniaturized comb sources across the whole infrared (IR), with an independent and simultaneous control of the two comb degrees of freedom at a metrological level, has not been possible, so far. Recently, promising results have been obtained with compact sources, namely diode-laser-pumped microresonators5,6⁠ and quantum cascade lasers (QCL-combs).7,8⁠ While both these sources rely on four-wave mixing (FWM) to generate comb frequency patterns, QCL-combs benefit from a mm-scale miniaturized footprint, combined with an ad-hoc tailoring of the spectral emission in the 3-250 µm range, by quantum engineering.9

Here, we demonstrate full stabilization and control of the two key parameters of a QCL-comb against the primary frequency standard. Our technique, here applied to a far-IR emitter and open ended to other spectral windows, enables Hz-level narrowing of the individual comb modes, and metrological-grade tuning of their individual frequencies, which are simultaneously measured with an accuracy of 2×10-12, limited by the frequency reference used. These fully-controlled, frequency-scalable, ultra-compact comb emitters promise to pervade an increasing number of mid- and far-IR applications, including quantum technologies, due to the quantum nature of the gain media.10

Read in full at arXiv.

This is an abstract of a preprint hosted on an independent third party site. It has not been peer reviewed but is currently under consideration at Nature Communications.

Go to the profile of Nature Communications

Nature Communications

Nature Research, Springer Nature