Revealing the Origin of Luminescence Center in 0D Cs4PbBr6 Perovskite

Zhaojun Qin, Shenyu Dai, Viktor G. Hadjiev, Chong Wang, Lingxi Ouyang, Lixin Xie, Yizhou Ni, Chunzheng Wu, Guang Yang, Shuo Chen, Liangzi Deng, Qingkai Yu, Ching-Wu Chu, Guoying Feng, Zhiming Wang, Jiming Bao

Go to the profile of Nature Communications
Apr 10, 2019
0
0

Received Date: 26th March 19

Zero dimensional perovskite Cs4PbBr6 has attracted considerable attention recently not only because of its highly efficient green photoluminescence (PL), but also its two highly debated opposing mechanisms of the luminescence: embedded CsPbBr3 nanocrystals versus intrinsic Br vacancy states. After a brief discussion on the root cause of the controversy, we provide sensitive but non-invasive methods that can not only directly correlate luminescence with the underlying structure, but also distinguish point defects from embedded nanostructures. We first synthesized both emissive and non-emissive Cs4PbBr6 crystals, obtained the complete Raman spectrum of Cs4PbBr6 and assigned all Raman bands based on density functional theory simulations. We then used correlated Raman-PL as a passive structure-property method to identify the difference between emissive and non-emissive Cs4PbBr6 crystals and revealed the existence of CsPbBr3 nanocrystals in emissive Cs4PbBr6. We finally employed a diamond anvil cell to probe the response of luminescence centers to hydrostatic pressure. The observations of fast red-shifting, diminishing and eventual disappearance of both green emission and Raman below Cs4PbBr6 phase transition pressure of ~3 GPa is compatible with CsPbBr3nanocrystal inclusions as green PL emitters and cannot be explained by Br vacancies. The resolution of this long-lasting controversy paves the way for further device applications of low dimensional perovskites, and our comprehensive optical technique integrating structure-property with dynamic pressure response is generic and can be applied to other emerging optical materials to understand the nature of their luminescent centers.

Read in full at arXiv.

This is an abstract of a preprint hosted on an independent third party site. It has not been peer reviewed but is currently under consideration at Nature Communications.

Go to the profile of Nature Communications

Nature Communications

Nature Research, Springer Nature