Impaired peroxisomal import in Drosophila hepatocyte-like cells induces cardiac dysfunction through the pro-inflammatory cytokine Upd3

Kerui Huang, Ting Miao, Kai Chang, Ping Kang, Qiuhan Jiang, Andrew J. Simmonds, Francesca Di Cara, Hua Bai

Go to the profile of Nature Communications
Jun 19, 2019
0
0

Received Date: 31st May 19

Age is a major risk factor for cardiovascular diseases. Currently, the non-autonomous regulation of age-related cardiac dysfunction is poorly understood. In the present study, we discover that age-dependent induction of cytokine unpaired 3 (Upd3) in Drosophila oenocytes (hepatocyte-like cells), due to a dampened peroxisomal import function, is the primary non-autonomous mechanism for elevated arrhythmicity in old hearts. We show that Upd3 is significantly up-regulated (52-fold) in aged oenocytes. Oenocyte-specific knockdown of Upd3 is sufficient to block aging-induced cardiac arrhythmia. We further show that the age-dependent induction of Upd3 is triggered by impaired peroxisomal import and elevated JNK signaling in aged oenocytes. Intriguingly, oenocyte-specific over-expression of Pex5, the key peroxisomal import receptor, restores peroxisomal import, blocks age-related Upd3 induction, and alleviates aging- and paraquat-induced cardiac arrhythmicity. Thus, our studies identify an important role of the evolutionarily conserved pro-inflammatory cytokine signaling and hepatocyte-specific peroxisomal import in mediating non-autonomous regulation of cardiac aging.

Read in full at bioRxiv.

This is an abstract of a preprint hosted on an independent third party site. It has not been peer reviewed but is currently under consideration at Nature Communications.

Go to the profile of Nature Communications

Nature Communications

Nature Research, Springer Nature