How deep is deep enough? - Quantifying class separability in the hidden layers of deep neural networks

Achim Schilling, Claus Metzner, Jonas Rietsch, Richard Gerum, Holger Schulze and Patrick Krauss

Aug 12, 2019
0
0

Received Date: 29th July 19

Deep neural networks typically outperform more traditional machine learning models in their ability to classify complex data, and yet is not clear how the individual hidden layers of a deep network contribute to the overall classification performance. We thus introduce a Generalized Discrimination Value (GDV) that measures, in a non-invasive manner, how well different data classes separate in each given network layer. The GDV can be used for the automatic tuning of hyper-parameters, such as the width profile and the total depth of a network. Moreover, the layer-dependent GDV(L) provides new insights into the data transformations that self-organize during training: In the case of multi-layer perceptrons trained with error backpropagation, we find that classification of highly complex data sets requires a temporal reduction of class separability, marked by a characteristic 'energy barrier' in the initial part of the GDV(L) curve. Even more surprisingly, for a given data set, the GDV(L) is running through a fixed 'master curve', independently from the total number of network layers. Furthermore, applying the GDV to Deep Belief Networks reveals that also unsupervised training with the Contrastive Divergence method can systematically increase class separability over tens of layers, even though the system does not 'know' the desired class labels. These results indicate that the GDV may become a useful tool to open the black box of deep learning.

Read in full at arXiv.

This is an abstract of a preprint hosted on an independent third party site. It has not been peer reviewed but is currently under consideration at Nature Communications.

Nature Communications

Nature Research, Springer Nature