Variant antigen diversity in Trypanosoma vivax is not driven by recombination

Sara Silva Pereira, Kayo J. G. de Almeida Castilho Neto, Craig W. Duffy, Peter Richards, Harry Noyes, Moses Ogugo, Marcos Rogério André, Zakaria Bengaly, Steve Kemp, Marta M. G. Teixeira, Rosangela Z. Machado, Andrew P. Jackson

Sep 13, 2019

Received Date: 30th August 19

African trypanosomes are vector-borne haemoparasites that cause African trypanosomiasis in humans and animals. Parasite survival in the bloodstream depends on immune evasion, achieved by antigenic variation of the Variant Surface Glycoprotein (VSG) coating the trypanosome cell surface. Recombination, or rather directed gene conversion, is fundamental in Trypanosoma brucei, as both a mechanism of VSG gene switching and of generating antigenic diversity during infections. Trypanosoma vivax is a related, livestock pathogen also displaying antigenic variation, but whose VSG lack key structures necessary for gene conversion in T. brucei. Thus, this study tests a long-standing prediction that T. vivax has a more restricted antigenic repertoire. Here we show that global VSG repertoire is broadly conserved across diverse T. vivax clinical strains. We use sequence mapping, coalescent approaches and experimental infections to show that recombination plays little, if any, role in diversifying T. vivax VSG sequences. These results explain interspecific differences in disease, such as propensity for self-cure, and indicate that either T. vivax has an alternate mechanism for immune evasion or else a distinct transmission strategy that reduces its reliance on long-term persistence. The lack of recombination driving antigenic diversity in T. vivax has immediate consequences for both the current mechanistic model of antigenic variation in African trypanosomes and species differences in virulence and transmission strategy, requiring us to reconsider the wider epidemiology of animal African trypanosomiasis.

Read in full at bioRxiv.

This is an abstract of a preprint hosted on an independent third party site. It has not been peer reviewed but is currently under consideration at Nature Communications.

Nature Communications

Nature Research, Springer Nature