Genetic drug target validation using Mendelian randomization

A F Schmidt, C Finan, M Gordillo-Marañón, F W Asselbergs, D F Freitag, R S Patel, B Tyl, S Chopade, R Faraway, M Zwierzyna, A D Hingorani

Go to the profile of Nature Communications
Oct 21, 2019
0
0

Received Date: 16th October 19

Mendelian randomisation analysis has emerged as an important tool to elucidate the causal relevance of a range of environmental and biological risk factors for human disease. However, inference on cause is undermined if the genetic variants used to instrument a risk factor of interest also associate with other traits that open alternative pathways to the disease (horizontal pleiotropy). We show how the ‘no horizontal pleiotropy assumption’ in MR analysis is strengthened when proteins are the risk factors of interest. Proteins are the proximal effectors of biological processes encoded in the genome, and are becoming assayable on an -omics scale. Moreover, proteins are the targets of most medicines, so Mendelian randomization (MR) studies of drug targets are becoming a fundamental tool in drug development. To enable such studies we introduce a formal mathematical framework that contrasts MR analysis of proteins with that of risk factors located more distally in the causal chain from gene to disease. Finally, we illustrate key model decisions and introduce an analytical framework for maximizing power and elucidating the robustness of drug target MR analyses.

Read in full at bioRxiv.

This is an abstract of a preprint hosted on an independent third party site. It has not been peer reviewed but is currently under consideration at Nature Communications.

Go to the profile of Nature Communications

Nature Communications

Nature Research, Springer Nature