Dynamic DNA-based Information Storage

Kevin N. Lin, Albert J. Keung, James M. Tuck

Go to the profile of Nature Communications
Nov 18, 2019
0
0

Received Date: 17th August 19

Technological leaps are often driven by key innovations that transform the underlying architectures of systems. Current DNA storage systems largely rely on polymerase chain reaction, which broadly informs how information is encoded, databases are organized, and files are accessed. Here we show that a hybrid ‘toehold’ DNA structure can unlock a fundamentally different, dynamic DNA-based information storage system architecture with broad advantages. This innovation increases theoretical storage densities and capacities by eliminating non-specific DNA-DNA interactions common in PCR and increasing the encodable sequence space. It also provides a physical handle with which to implement a range of in-storage file operations. Finally, it reads files non-destructively by harnessing the natural role of transcription in accessing information from DNA. This simple but powerful toehold structure lays the foundation for an information storage architecture with versatile capabilities.

Read in full at bioRxiv.

This is an abstract of a preprint hosted on an independent third party site. It has not been peer reviewed but is currently under consideration at Nature Communications.

Go to the profile of Nature Communications

Nature Communications

Nature Research, Springer Nature