Dynamic perceptual feature selectivity in primary somatosensory cortex upon reversal learning

Ronan Chéreau, Tanika Bawa, Leon Fodoulian, Alan Carleton, Stéphane Pagès, Anthony Holtmaat

Go to the profile of Nature Communications
Dec 02, 2019
0
0

Received Date: 13th November 19

Neurons in primary sensory cortex encode a variety of stimulus features upon perceptual learning. However, it is unclear whether the acquired stimulus selectivity remains stable when the same input is perceived in a different context. Here, we monitored the activity of individual neurons in the mouse primary somatosensory cortex in a reward-based texture discrimination task. We tracked their stimulus selectivity before and after changing reward contingencies, which allowed us to identify various classes of neurons. We found neurons that stably represented a texture or the upcoming behavioral choice, but the majority was dynamic. Among those, a subpopulation of neurons regained selectivity contingent on stimulus-value. These value-sensitive neurons forecasted the onset of learning by displaying a distinct and transient increase in activity, depending on past behavioral experience. Thus, stimulus selectivity of excitatory neurons during perceptual learning is dynamic and largely relies on behavioral contingencies, even in primary sensory cortex.

Read in full at bioRxiv.

This is an abstract of a preprint hosted on an independent third party site. It has not been peer reviewed but is currently under consideration at Nature Communications.

Go to the profile of Nature Communications

Nature Communications

Nature Research, Springer Nature