Frequency comb generation via cascaded second-order nonlinearities in microresonators

Jan Szabados, Danila N. Puzyrev, Yannick Minet, Luis Reis, Karsten Buse, Alberto Villois, Dmitry V. Skryabin, Ingo Breunig

Go to the profile of Nature Communications
Jan 22, 2020
0
0

Received Date: 30th December 19

Optical frequency combs are revolutionising modern time and frequency metrology. In the past years, their range of applications has increased substantially, driven by their miniaturisation through microresonator-based solutions. The combs in such devices are typically generated using the third-order χ(3)-nonlinearity of the resonator material. An alternative approach is making use of second-order χ(2)-nonlinearities. While the idea of generating combs this way has been around for almost two decades, so far only few demonstrations are known, based either on bulky bow-tie cavities or on relatively low-Q waveguide resonators. Here, we present the first such comb that is based on a millimetre-sized microresonator made of lithium niobate, that allows for cascaded second-order nonlinearities. This proof-of-concept device comes already with pump thresholds as small as 2 mW, generating repetition-rate-locked combs around 1064 nm and 532 nm. From the nonlinear dynamics point of view, the observed combs correspond to the Turing roll patterns.

Read in full at arXiv.

This is an abstract of a preprint hosted on an independent third party site. It has not been peer reviewed but is currently under consideration at Nature Communications.

Go to the profile of Nature Communications

Nature Communications

Nature Research, Springer Nature