Talin Folding; the Tuning Fork of Cellular Mechanotransduction

Rafael Tapia-Rojo, Julio M. Fernandez

Go to the profile of Nature Communications
Jan 28, 2020
0
0

Received Date: 21st January 20

Cells continually sample their mechanical environment using exquisite force sensors such as talin, whose folding status triggers mechanotransduction pathways by recruiting binding partners. Mechanical signals in biology change quickly over time and are often embedded in noise; however, the mechanics of force-sensing proteins have only been tested using simple force protocols, such as constant or ramped forces. Here, using our magnetic tape head tweezers design, we measure the folding dynamics of single talin proteins in response to mechanical noise and cyclic force perturbations. Our experiments demonstrate that talin filters out mechanical noise but detects periodic force signals over a finely-tuned frequency range. Hence, talin operates as a mechanical bandpass filter, able to read and interpret frequency-dependent mechanical information through its folding dynamics. We describe our observations in the context of stochastic resonance, which we propose as a mechanism by which mechanosensing proteins could respond accurately to force signals in the naturally noisy biological environment.

Read in full at bioRxiv.

This is an abstract of a preprint hosted on an independent third party site. It has not been peer reviewed but is currently under consideration at Nature Communications.

Go to the profile of Nature Communications

Nature Communications

Nature Research, Springer Nature