Emergence of stealth polymorphs that escape α-synuclein amyloid monitoring, take over and acutely spread in neurons

Francesca De Giorgi, et al.

Go to the profile of Nature Communications
Feb 28, 2020
0
0

Received Date: 19th February 20

Francesca De Giorgi,  Florent Laferrière, Federica Zinghirino,  Emilie Faggiani,  Alons Lends, Mathilde Bertoni, Xuan Yu,   Axelle Grélard,  Estelle Morvan,  Birgit Habenstein,  Nathalie Dutheil,  Evelyne Doudnikoff,  Jonathan Daniel,  Stéphane Claverol, Chuan Qin,  Antoine Loquet,  Erwan Bezard,  François Ichas

The conformational strain diversity characterizing α-synuclein (α-syn) amyloid fibrils is possibly at the origin of the different clinical presentations of synucleinopathies. Experimentally, various α-syn fibril polymorphs have been obtained from distinct fibrillization conditions by altering the medium constituents and were selected by amyloid monitoring using the probe Thioflavin T (ThT). We report here that besides classical ThT positive products, fibrillization in saline simultaneously gives rise to competing fibril polymorphs that are invisible to ThT (stealth polymorphs), and that can take over. Due to competition, spontaneous generation of such stealth polymorphs bears on the apparent fibrillization kinetics and on the final plateau values. Their emergence has thus been ignored so far or mistaken for fibrillization inhibitions/failures. Compared to their ThT-positive counterparts, and as judged from their chemical shift resonances fingerprint, these new stealth polymorphs present a yet undescribed atomic organization and show an exacerbated propensity (approx. 20-fold) towards self-replication in cortical neurons. They also trigger a long distance synucleinopathic spread along nigro-striatal projections in vivo. In order to rapidly screen fibrillization products for the presence of such stealth polymorphs, we designed a simple multiplexed assay that can be easily and rapidly operated. This assay allows us to demonstrate the sustainability of the conformational replication of these novel and particularly invasive strains. It should also be of help to avoid erroneous upstream interpretations of fibrillization rates based on sole ThT, and to expedite further structural and functional characterization of stealth amyloid assemblies.

Read in full at bioRxiv.

This is an abstract of a preprint hosted on an independent third party site. It has not been peer reviewed but is currently under consideration at Nature Communications.

Go to the profile of Nature Communications

Nature Communications

Nature Research, Springer Nature